忍者ブログ

GameDesign 西部劇TRPG開発日誌

[PR]

×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

新クトゥルフ神話TRPG(CoC7版)の五分の一の計算方法

小学生の頃に習った通分を使って直ぐに計算できます。

Xに1/5倍するのですから2/10倍することと同じですね。
分数の掛け算は分子を掛けた後に分母で割ります。

つまり2/10倍するには、

二倍して十で割ります。

例えば55ならば二倍して110にした後、十で割ると11になります。
この値が55の1/5です。

もしくは、
十で割ってから二倍します。

例えば55ならば十で割って5.5にした後、二を掛けると11になります。

端数についてはルールブックを参照して下さい。

PR

[TRPG]TORGの対数システムとは何か、小さい差は表せるのか。

対数で小さい数字は表せます。ルールブックが間違い。
TORGの対数は小さい数が表せないことになっていますが、数学的には表せます。



対数表というものがあって、TORGでは表参照すると数値(真数)と基本値(対数)が対応しています。
xが真数、pが対数、aが底です。
普通の運用では

真数(数値)の掛け算は対数(基本値)の足し算になります。
真数(数値)の割り算は対数(基本値)の引き算になります。
真数(数値)と真数(数値)の足し算は真数(数値)と真数(数値)を足し算します。
真数(数値)と真数(数値)の引き算は真数(数値)と真数(数値)を引き算します。



対数表というものがあって、普通の運用では常用対数(底が10)や自然対数(ネイピア数e)を使います。


対数表の使い方でわかりやすいのは



小さい数を表すには割り算を考えればいいので、対数(基本値)引く対数(基本値)でOK。
対数(基本値)の割り算掛け算は指数倍のことです。

対数システムはTORGのオリジナルではなく対数表や計算尺に用いられる枯れた技術です。
デザインの意図は対数(基本値)による計算の簡略化のものではないでしょうか。

ルール記述通り、5乗で10倍なら、

LOG(10, 1.584893192)
 ※LOG(真数,底)

になるとすると、1の増加は、1.584893192倍になります。

1.584893192^5=10

を考えれば良いのです。
1上昇するとほぼ1.5倍という記述もありますが、好意的に解釈するのでしょう。
要するに1.584893192に同じ1.584893192を対数(基本値)回掛けたら真数(数値)になるという事です。

※TORGの底は、10^(1/5)=10^(0.2)ですから1.584893192ともとめられます。
※LOG(10,10^(1/5))は、底の1/5乗を外して底を10として、対数に1/5の逆数(つまり5)を掛ければ同じになります。つまり常用対数表(底が10)の5倍の対数です。こちらのサイトが分かりやすい。


よくTORGで対数(基本値)に整数を割り算掛け算する人がいますが、それは面積とかエネルギーとか体積(重量)を求めるようなとき(べき乗・累乗する)だけで、基本は掛け算割り算を足し算引き算にするということになります。

例として、

数値が100(基本値10)と数値25(基本値7)なら、
数値の掛け算100×25=2500を、
基本値で考えると10+7=17(数値2500に対応する)

という原理です。
割り算は引き算になりますので、

数値2500(基本値17)割る数値25(基本値7)なら
数値の割り算2500÷25=100は
基本値の引き算17-7=10(基本値10は数値100)です。
ところがTORGはアバウトな丸めた値の参照をするので、つじつまが合わず、理解に苦労します。
あと高校数学で習ったという「たいすうの法則」は対数ではなくて大数なので、大数の法則は習いましたが対数の法則ではありません。一体、何が関係するのかサッパリです。こういうのが混乱の元です。

下の表は微妙な値を計算したものです。小さい数値を扱えないはずはありません。大きい分母の分数とかマイナス乗を考えれば良いだけです。
対数による演算は実用的(手計算)には上三桁くらいの精度です。

対数の底10^0.2での
対数と底10^0.2 の対数乗表 つまり(10^(1/5))^(対数)

-1 0.6309573447
-0.9 0.6606934482
-0.8 0.6918309711
-0.7 0.7244359602
-0.6 0.7585775752
-0.5 0.7943282348
-0.4 0.8317637712
-0.3 0.87096359
-0.2 0.9120108394
-0.1 0.954992586
0 1
0.1 1.047128548
0.2 1.096478196
0.3 1.148153621
0.4 1.202264434
0.5 1.258925412
0.6 1.318256738
0.7 1.380384264
0.8 1.44543977
0.9 1.513561248
1 1.584893192

関数電卓 Panecalで計算手順を示し原理を説明します。

消費税の10%を表現したい場合は、十分の十一税ですから、
常用対数の場合、10が底ならば、
log(11)-log(10)
=log(1)
=0.041392685158
ですね。
この0.041392685158はどこかに置いておいて対数だけで計算できます。
10000enのものを買ったら常用対数では4ですから、
log(4)-(log(11)-log(10))
=log(3)
つまりlogを外してしまって
4-(11-10)=3
として
を3を常用対数表を参照するか、常用対数の底10に10^(3)すると、1000enと出ます。

べき乗(つまり累乗)は

E=mc^2 を例にします。

かりにm=10,c=3とします。
まんま計算すると

10×3^(2)=90

ですね。
掛け算を足し算にしてべき乗は掛け算にする。自然対数eが底ならば

ln(10)+2×ln(3)

足し算と掛け算に出来ます。
自然対数のべき乗を求める。

e^(ln(10)+2×ln(3))=89.999
(e^()は自然対数表を参照するという意味です。およそ90)

底が違っても同じ事で、常用対数の場合、10が底ならば

log(10)+2×log(3)

10^(log(10)+2×log(3))=89.999
(10^()は常用対数表を参照するという意味です。およそ90)

この通り底が変わっても計算は成立します。
TORGの底である10^(1/5)つまり1.584893192にしても同様に成立します。

基本値を二倍するというルールの記述は要するに二乗しているということです。何か謎の計算をしているわけではありません。

よく間違われるケースとして、
足し算したい場合、対数だけで
常用対数1と常用対数5を log(1)+log(5)=log(5)
なんて妙なことをやるのは間違いです。
この場合計算間違いになってしまいます。
log(1)=0
log(5)=0.698970004
なので加算すると
log(5) ? 

それとも

log(1+5)
=log(6)
掛け算になる?

でしょうか。

いいえ、両方とも間違いです。
真数の足し引き算はせず、logならば、ちゃんと計算します。
底は10なので、真数を求めます。真数は底の対数乗です。
10^1+10^5=10+100000=100010です。
100010の対数は底を10にすれば5.000043です。
確かめるとlog(5)は0.698970004です。log(6)は0.778151250です。
このように計算が合いませんね。

対数を加算・減算するのは掛け算・割り算の時だけです。
加算・減算したいときは対数の真数を求めて真数を加算・減算します。

TORGで言うのなら基本値を足し引き算するのは数値の掛け算割り算を意味しています。
値を足し引き算したい場合は基本値ではなく対応する数値を足し引き算します。

TORGで基本値10と基本値11を加算したい場合は、
底は10^0.2なので、

(10^0.2)^10+(10^0.2)^11
=258.4893192

ここから10^(1/5)つまり、10^0.2を底とした基本値である対数をとると、対数は
LOG((10^0.2)^10+(10^0.2)^11,10^0.2)
=LOG(258.4893192,10^0.2)
=12.06221301

です。


なぜこんなことをしているかと言えば、計算を簡単にするためです。
単なる加算や減算は基本値だけの操作では出来ません。

例えば基本値10と基本値11を掛けたい場合は、本来は掛け算のところを、基本値同士の足し算で10+11=21だけです。基本値21のところにある数値が答えです。掛け算割り算は楽になります。

もしかしたら、TORGのこの常用対数でもなく自然対数でもない底であるといった部分がコズムとかポシビリティとかいったものをデザイン的に表しているのかも知れないと思います。

細かい数値はどうでしょうか。
指数は当たり前ですが大きい数値も細かい数字も表せますね。TORGではなぜか表上にマイナスの対数はありませんが、もちろん表せます。
このマイナスが表にないのと数値の丸めでかえって分かりにくくなっていると思います。
マイナスの対数となるべく丸めない表が下です。



対数を底10^0.2で考えた場合
対数 底10^0.2 の対数乗
(真数)
(10^(1/5))^(対数)
()内は丸めた数字と範囲
-20 0.0001
-19 0.0001584893192
-18 0.0002511886432
-17 0.0003981071706
-16 0.0006309573445
-15 0.001
-14 0.001584893192
-13 0.002511886432
-12 0.003981071706
-11 0.006309573445
-10 0.01
-9 0.01584893192
-8 0.02511886432
-7 0.03981071706
-6 0.06309573445
-5 0.1
-4 0.1584893192
-3 0.2511886432
-2 0.3981071706
-1 0.6309573445
0 1(1)
1 1.584893192(2)
2 2.511886432(3)
3 3.981071706(4~5)
4 6.309573445(6~9)
5 10(10~14)
6 15.84893192(15~24)
7 25.11886432(25~39)
8 39.81071706(40~59)
9 63.09573445(6~99)
10 100(100~149)
11 158.4893192(150~249)
12 251.1886432(250~399)
13 398.1071706(400~599)
14 630.9573445(600~999)
15 1000(1000~1499)
16 1584.893192(1500~2499)
17 2511.886432(2500~3999)
18 3981.071706(4000~5999)
19 6309.573445(6000~9999)
20 10000(10000~)
21 15848.93192(15000~)
22 25118.86432(25000~)
23 39810.71706(40000~)
24 63095.73445(60000~)
25 100000(100000~)
26 158489.3192(150000~)
27 251188.6432(250000~)
28 398107.1706(400000~)
29 630957.3445(600000~)
30 1000000(1000000~)
31 1584893.192(1500000~)
32 2511886.432(2500000~)
33 3981071.706(4000000~)
34 6309573.445(6000000~)
35 10000000(10000000~)
36 15848931.92(15000000~)
37 25118864.32(25000000~)
38 39810717.06(40000000~)
39 63095734.45(60000000~)
40 100000000(100000000~)
4

[TRPG]CoC7のペナルティー・ダイスとボーナス・ダイスの累積確率


 CoC7のペナルティー・ダイスとボーナス・ダイスの累積確率を計算修正しました。合っていると願う。 検証用のファイルのリンク。コメントOK。

Googleスプレッドシート


[TRPG]新クトゥルフ神話TRPG ルールブック

amazonでは12月20日に販売されるそうです。


[TRPG]クトゥルフ神話TRPG6版クイックスタート

再配布不可です。注意。PDFファイルです。著作権法上個人使用のものなので対象者にはパスワードをお知らせしています。
 ルールブックはこれから第7版の新しいものが発行されます。


ダウンロード




[WESTERN]アメリカの宗教

 「真昼の決闘」で出て来るクエーカー教徒(ポリティカルコレクトネスとしてはフレンド派)の花嫁がいます。
 「男の出発」には宗教的な移住者が出てきます。
 「沈黙の大地」はモルモン教でした。
 西部開拓時代のときにキリスト教の大覚醒というブームがありました。

 イサベラ・バードの記録、「アメリカ合衆国における宗教の諸相」。南北戦争以前の情報です。

アメリカ合衆国における宗教の諸相

イザベラ・バード 著 ; 高畑美代子, 長尾史郎 訳

『日本奥地紀行』の著者による、19世紀中頃アメリカ合衆国における信仰復興運動(グレイト・リヴァイヴァル)の調査報告。奴隷制度をめぐって自由州・奴隷州の混乱うずまく、南北戦争直前の合衆国の姿を浮き彫りにし、教会の立場を鋭く問いかける。本邦初訳。

「BOOKデータベース」より

[目次]

  • 第1章 はじめに
  • 第2章 合衆国の地域的諸特性
  • 第3章 合衆国の教会
  • 第4章 合衆国の非福音主義教会
  • 第5章および第6章 ニューイングランド
  • 第7章 南部諸州と奴隷制度
  • 第8章 西部の諸相
  • 第9章 合衆国の説教の諸特性
  • 第10章 総評
  • 結論

「BOOKデータベース」より


 参考としてよく分かるのが、世界「宗教」総覧。

世界「宗教」総覧

井門富二夫 ほか著

本書は、世界の歴史および現代の状況に多大な影響力をもつ「宗教」について、その歴史と現状を概観。ここでは主に、創始者とその思想、成立過程と歴史、特筆すべき事項、現状、その宗教を知るための参考文献、以上五点を主眼として、記述。

「BOOKデータベース」より

[目次]

  • 西欧の宗教と日本の宗教
  • 第1部 歴史篇
  • 第2部 地域篇
  • 第3部 キリスト教篇
  • 第4部 イスラーム篇
  • 第5部 インド宗教篇
  • 第6部 仏教篇
  • 第7部 諸教篇
  • 第8部 信仰・思想篇
  • 資料篇(世界宗教年表
  • 世界宗教関連用語事典
  • 世界宗教主要参考文献)

「BOOKデータベース」より


 クエーカー教徒では日本の皇室が関わってきます。ヴァイニング夫人という女性が昭和時代、皇太子の教師でした。その著書「ウィリアム・ペン―民主主義の先駆者」。

ウィリアム・ペン : 民主主義の先駆者

ヴァイニング夫人 著 ; 高橋たね 訳

[目次]

  • 目次
  • 第一部 息子 ウィリアム / p1
  • 一 喜びのおとずれ / p2
  • 二 西風の吹く間に / p7
  • 三 大將はロンドン塔へ / p15
  • 四 アイルランドへ / p22
  • 五 若きペン / p31
  • 六 歐洲漫遊 / p44
  • 七 王への使い / p53
  • 八 靑年政治家 / p64
  • 九 トマス・ローとの再會 / p74
  • 十 ウィリアムと父 / p84
  • 十一 「搖らぐ砂の礎」 / p98
  • 十二 ロンドン塔にて / p104
  • 十三 靑春のひととせ / p112
  • 十四 グレースチャーチ街の騒擾 / p121
  • 十五 裁判 / p131
  • 十六 提督の最後の港 / p147
  • 第二部 オナス / p151
  • 十七 ウィリアムとギュリエルマ / p152
  • 十八 準備 / p166
  • 十九 船と荷馬車で / p177
  • 二十 崩壞 / p189
  • 二十一 國の芽生え / p195
  • 二十二 オナス / p210
  • 二十三 ペンシルヴァニアの四季 / p220
  • 二十四 知事の歸國 / p235
  • 二十五 イギリス王の友 / p240
  • 二十六 追われる身 / p254
  • 二十七 ハナ / p264
  • 二十八 ふたゝびペンシルヴァニアへ / p271
  • 二十九 ペンズベリィ莊園 / p282
  • 三十 群がる暗雲 / p293
  • 三十一 勝利 / p302
  • あとがき / p305

「国立国会図書館デジタルコレクション」より


 小規模な宗教的集団移住者については「心霊の文化史---スピリチュアルな英国近代」にありました。アメリカの情報もありました。

心霊の文化史 : スピリチュアルな英国近代

吉村正和 著

心霊主義と一口に言っても、降霊会、骨相学、神智学など、その裾野は広い。当初は死者との交信から始まった心霊主義だが、やがて科学者や思想家たちの賛同を得ながら、時代の精神へと変容を遂げ、やがて社会改革運動にまで発展していく。本書では心霊主義の軌跡を追いながら、真のスピリチュアルとは何かを検証する。

「BOOKデータベース」より

[目次]

  • 序章 心霊主義の誕生
  • 第1章 骨相学、人間観察、催眠術
  • 第2章 心霊主義と社会改革
  • 第3章 神智学とオカルト
  • 第4章 心理学との融合
  • 第5章 田園都市と心霊主義

「BOOKデータベース」より


 「沈黙の大地」は今のところVHSのみです。あまりお勧めしませんが。トム・ベレンジャーのテレビムービーです。


[WESTERN]ピンカートン探偵社の謎


「ピンカートン探偵社の謎」
 日本人による解説。

久田俊夫 著

社のシンボルマークに謳われた標語「われわれは決して眠らない」で全米はおろか欧州にまでその名を轟かせたピンカートン探偵社。「シャーロック・ホームズ」シリーズをはじめ、数々の推理小説や映画に登場してきた有名探偵社の栄光の影に潜む謎を解明し、その全貌に迫る。

「BOOKデータベース」より

[目次]

第1章 ピンカートン探偵社の起源
第2章 南北戦争でジャンプ
第3章 社内管理は女スパイに
第4章 私立探偵のイメージ
第5章 資本家の騎士団
第6章 犯罪資料のデータベース化
第7章 泥棒逮捕に前科者を使う
第8章 工作員ア・ラ・カルト
第9章 雨後の竹の子
「BOOKデータベース」より

[WESTERN]手綱は左右二本

ブリティッシュや競馬は知りませんが、ウエスタン馬術では手綱は左右二本です。
 よくマンガなどで手綱が後ろで繋がっている描写がありますが、手綱はreinsとして複数形で、単数ではありません。